{ "id": "1205.2025", "version": "v1", "published": "2012-05-09T16:31:08.000Z", "updated": "2012-05-09T16:31:08.000Z", "title": "The numerical range of a contraction with finite defect numbers", "authors": [ "Hari Bercovici", "Dan Timotin" ], "categories": [ "math.FA" ], "abstract": "An n-dilation of a contraction T acting on a Hilbert space H is a unitary dilation acting on H \\oplus C^n. We show that if both defect numbers of T are equal to n, then the closure of the numerical range of T is the intersection of the closures of the numerical ranges of its n-dilations. We also obtain detailed information about the geometrical properties of the numerical range of T in case n=1.", "revisions": [ { "version": "v1", "updated": "2012-05-09T16:31:08.000Z" } ], "analyses": { "subjects": [ "47A12", "47A20" ], "keywords": [ "numerical range", "finite defect numbers", "contraction", "n-dilation", "hilbert space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1205.2025B" } } }