{ "id": "1205.1375", "version": "v3", "published": "2012-05-07T13:20:07.000Z", "updated": "2013-06-26T06:44:43.000Z", "title": "Simplicial volume of compact manifolds with amenable boundary", "authors": [ "Sungwoon Kim", "Thilo Kuessner" ], "comment": "22 pages", "categories": [ "math.GT", "math.AT" ], "abstract": "Let $M$ be the interior of a connected, oriented, compact manifold $V$ of dimension at least 2. If each path component of $\\partial V$ has amenable fundamental group, then we prove that the simplicial volume of $M$ is equal to the relative simplicial volume of $V$ and also to the geometric (Lipschitz) simplicial volume of any Riemannian metric on $M$ whenever the latter is finite. As an application we establish the proportionality principle for the simplicial volume of complete, pinched negatively curved manifolds of finite volume.", "revisions": [ { "version": "v3", "updated": "2013-06-26T06:44:43.000Z" } ], "analyses": { "subjects": [ "53C23" ], "keywords": [ "compact manifold", "amenable boundary", "proportionality principle", "riemannian metric", "path component" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1205.1375K" } } }