{ "id": "1205.1356", "version": "v1", "published": "2012-05-07T11:58:24.000Z", "updated": "2012-05-07T11:58:24.000Z", "title": "On extremal function of a modulus of a foliation", "authors": [ "Malgorzata Ciska" ], "comment": "11 pages", "categories": [ "math.DG" ], "abstract": "We investigate the properties of a modulus of a foliation on a Riemannian manifold. We give necessary and sufficient conditions for the existence of an extremal function and state some of its properties. We obtain the integral formula which, in a sense, combines the integral over the manifold with integral over the leaves. We state the relation between an extremal function and the geometry of distribution orthogonal to a foliation.", "revisions": [ { "version": "v1", "updated": "2012-05-07T11:58:24.000Z" } ], "analyses": { "subjects": [ "53C12", "58C35" ], "keywords": [ "extremal function", "distribution orthogonal", "sufficient conditions", "properties", "riemannian manifold" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1205.1356C" } } }