{ "id": "1205.1345", "version": "v1", "published": "2012-05-07T11:03:49.000Z", "updated": "2012-05-07T11:03:49.000Z", "title": "Nonlinear Schrödinger equations near an infinite well potential", "authors": [ "Thomas Bartsch", "Mona Parnet" ], "comment": "22 pages", "categories": [ "math.AP" ], "abstract": "The paper deals with standing wave solutions of the dimensionless nonlinear Schr\\\"odinger equation \\label{eq:abs1} i\\Phi_t(x,t) = -\\Delta_x\\Phi +V_\\la(x)\\Phi + f(x,\\Phi), \\quad x\\in\\R^N,\\ t\\in\\R,\\tag{$NLS_\\la$} where the potential $V_\\la:\\R^N\\to\\R$ is close to an infinite well potential $V_\\infty:\\R^N\\to\\R$, i. e. $V_\\infty=\\infty$ on an exterior domain $\\R^N\\setminus\\Om$, $V_\\infty|_\\Om\\in L^\\infty(\\Om)$, and $V_\\la\\to V_\\infty$ as $\\la\\to\\infty$ in a sense to be made precise. The nonlinearity may be of Gross-Pitaevskii type. A solution of \\eqref{eq:abs1} with $\\la=\\infty$ vanishes on $\\R^N\\setminus\\Om$ and satisfies Dirichlet boundary conditions, hence it solves \\label{eq:abs2} i\\Phi_t(x,t) &= -\\Delta_x\\Phi +V_\\la(x)\\Phi + f(x,\\Phi), &&\\quad x\\in\\Om,\\ t\\in\\R \\Phi(x,t) &= 0 &&\\quad x\\in\\pa\\Om,\\ t\\in\\R. \\tag{$NLS_\\infty$}. We investigate when a solution $\\Phi_\\infty$ of the infinite well potential \\eqref{eq:abs2} gives rise to nearby solutions $\\Phi_\\la$ of the finite well potential \\eqref{eq:abs1} with $\\la\\gg1$ large. Considering \\eqref{eq:abs2} as a singular limit of \\eqref{eq:abs1} we prove a kind of singular continuation type results.", "revisions": [ { "version": "v1", "updated": "2012-05-07T11:03:49.000Z" } ], "analyses": { "subjects": [ "35J20", "35J61", "35J91", "35Q55", "58E05" ], "keywords": [ "nonlinear schrödinger equations", "satisfies dirichlet boundary conditions", "singular continuation type results", "wave solutions", "exterior domain" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1205.1345B" } } }