{ "id": "1205.1302", "version": "v1", "published": "2012-05-07T07:18:34.000Z", "updated": "2012-05-07T07:18:34.000Z", "title": "A positive mass theorem for low-regularity metrics", "authors": [ "James D. E. Grant", "Nathalie Tassotti" ], "comment": "Announcement, 4 pages, comments welcome", "categories": [ "math.DG", "gr-qc", "math-ph", "math.MP" ], "abstract": "We prove a positive mass theorem for continuous Riemannian metrics in the Sobolev space $W^{2, n/2}_{\\mathrm{loc}}(M)$. We argue that this is the largest class of metrics with scalar curvature a positive a.c. measure for which the positive mass theorem may be proved by our methods.", "revisions": [ { "version": "v1", "updated": "2012-05-07T07:18:34.000Z" } ], "analyses": { "subjects": [ "53C20", "83C99" ], "keywords": [ "positive mass theorem", "low-regularity metrics", "scalar curvature", "continuous riemannian metrics", "largest class" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1113743, "adsabs": "2012arXiv1205.1302G" } } }