{ "id": "1205.1189", "version": "v1", "published": "2012-05-06T07:49:24.000Z", "updated": "2012-05-06T07:49:24.000Z", "title": "Bounds For The Distance Estrada Index Of Graphs", "authors": [ "Ş. Burcu Bozkurt", "Durmuş Bozkurt" ], "categories": [ "math.CO", "math.SP" ], "abstract": "The D-eigenvalues {\\mu}_1,{\\mu}_2,...,{\\mu}_{n} of a connected graph G are the eigenvalues of its distance matrix. The distance Estrada index of G is defined in [15] as DEE=DEE(G)=\\Sigma_{i=1}^n e^{{\\mu}_{i}} In this paper, we give better lower bounds for the distance Estrada index of any connected graph as well as some relations between DEE(G) and the distance energy.", "revisions": [ { "version": "v1", "updated": "2012-05-06T07:49:24.000Z" } ], "analyses": { "subjects": [ "05C12", "05C90" ], "keywords": [ "distance estrada index", "connected graph", "better lower bounds", "distance matrix", "distance energy" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1205.1189B" } } }