{ "id": "1205.1111", "version": "v1", "published": "2012-05-05T07:35:41.000Z", "updated": "2012-05-05T07:35:41.000Z", "title": "Upper bounds for the minimal number of singular fibers in a Lefschetz fibration over the torus", "authors": [ "Noriyuki Hamada" ], "categories": [ "math.GT" ], "abstract": "In this paper, we give some relations in the mapping class groups of oriented closed surfaces in the form that a product of a small number of right hand Dehn twists is equal to a single commutator. Consequently, we find upper bounds for the minimal number of singular fibers in a Lefschetz fibration over the torus.", "revisions": [ { "version": "v1", "updated": "2012-05-05T07:35:41.000Z" } ], "analyses": { "keywords": [ "minimal number", "singular fibers", "lefschetz fibration", "upper bounds", "right hand dehn twists" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1205.1111H" } } }