{ "id": "1205.0961", "version": "v1", "published": "2012-05-04T14:10:35.000Z", "updated": "2012-05-04T14:10:35.000Z", "title": "On the expansion of some exponential periods in an integer base", "authors": [ "Boris Adamczewski" ], "comment": "11 pages", "journal": "Math. Ann. 346 (2010), 107-116", "categories": [ "math.NT", "math.CO" ], "abstract": "We derive a lower bound for the subword complexity of the base-$b$ expansion ($b\\geq 2$) of all real numbers whose irrationality exponent is equal to 2. This provides a generalization of a theorem due to Ferenczi and Mauduit. As a consequence, we obtain the first lower bound for the subword complexity of the number $e$ and of some other transcendental exponential periods.", "revisions": [ { "version": "v1", "updated": "2012-05-04T14:10:35.000Z" } ], "analyses": { "keywords": [ "integer base", "subword complexity", "first lower bound", "transcendental exponential periods", "real numbers" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1205.0961A" } } }