{ "id": "1205.0414", "version": "v1", "published": "2012-05-02T12:58:44.000Z", "updated": "2012-05-02T12:58:44.000Z", "title": "Hypercyclic operators on countably dimensional spaces", "authors": [ "Andre Schenke", "Stanislav Shkarin" ], "categories": [ "math.FA", "math.DS" ], "abstract": "According to Grivaux, the group $GL(X)$ of invertible linear operators on a separable infinite dimensional Banach space $X$ acts transitively on the set $\\Sigma(X)$ of countable dense linearly independent subsets of $X$. As a consequence, each $A\\in \\Sigma(X)$ is an orbit of a hypercyclic operator on $X$. Furthermore, every countably dimensional normed space supports a hypercyclic operator. We show that for a separable infinite dimensional Fr\\'echet space $X$, $GL(X)$ acts transitively on $\\Sigma(X)$ if and only if $X$ possesses a continuous norm. We also prove that every countably dimensional metrizable locally convex space supports a hypercyclic operator.", "revisions": [ { "version": "v1", "updated": "2012-05-02T12:58:44.000Z" } ], "analyses": { "keywords": [ "hypercyclic operator", "countably dimensional spaces", "infinite dimensional banach space", "infinite dimensional frechet space", "dimensional normed space supports" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1205.0414S" } } }