{ "id": "1205.0371", "version": "v1", "published": "2012-05-02T10:37:29.000Z", "updated": "2012-05-02T10:37:29.000Z", "title": "Mersenne Primes in Real Quadratic Fields", "authors": [ "Sushma Palimar", "Shankar B. R" ], "comment": "12 pages", "categories": [ "math.NT" ], "abstract": "The concept of Mersenne primes is studied in real quadratic fields of class number 1. Computational results are given. The field $Q(\\sqrt{2})$ is studied in detail with a focus on representing Mersenne primes in the form $x^{2}+7y^{2}$. It is also proved that $x$ is divisible by 8 and $y\\equiv \\pm3\\pmod{8}$ generalizing the result of F Lemmermeyer, first proved in \\cite{LS} using Artin's Reciprocity law.", "revisions": [ { "version": "v1", "updated": "2012-05-02T10:37:29.000Z" } ], "analyses": { "subjects": [ "11R11", "11Y11" ], "keywords": [ "real quadratic fields", "artins reciprocity law", "class number", "computational results", "representing mersenne primes" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1205.0371P" } } }