{ "id": "1205.0305", "version": "v1", "published": "2012-05-02T02:34:41.000Z", "updated": "2012-05-02T02:34:41.000Z", "title": "Branden's Conjectures on the Boros-Moll Polynomials", "authors": [ "William Y. C. Chen", "Donna Q. J. Dou", "Arthur L. B. Yang" ], "comment": "8 pages", "categories": [ "math.CO", "math.CA" ], "abstract": "We prove two conjectures of Br\\\"{a}nd\\'{e}n on the real-rootedness of polynomials $Q_n(x)$ and $R_n(x)$ which are related to the Boros-Moll polynomials $P_n(x)$. In fact, we show that both $Q_n(x)$ and $R_n(x)$ form Sturm sequences. The first conjecture implies the 2-log-concavity of $P_n(x)$, and the second conjecture implies the 3-log-concavity of $P_n(x)$.", "revisions": [ { "version": "v1", "updated": "2012-05-02T02:34:41.000Z" } ], "analyses": { "subjects": [ "26C10", "05A20", "30C15" ], "keywords": [ "boros-moll polynomials", "brandens conjectures", "first conjecture implies", "second conjecture implies", "form sturm sequences" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1205.0305C" } } }