{ "id": "1205.0286", "version": "v2", "published": "2012-05-01T23:29:50.000Z", "updated": "2013-06-04T21:13:38.000Z", "title": "Quantum ergodic restriction for Cauchy data: Interior QUE and restricted QUE", "authors": [ "Hans Christianson", "John Toth", "Steve Zelditch" ], "comment": "9 pages. Final version; incorporates referees' comments. To appear in MRL", "journal": "Math.Res.Lett 20 (2013) 465-475", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "We prove a quantum ergodic restriction theorem for the Cauchy data of a sequence of quantum ergodic eigenfunctions on a hypersurface $H$ of a Riemannian manifold $(M, g)$. The technique of proof is to use a Rellich type identity to relate quantum ergodicity of Cauchy data on $H$ to quantum ergodicity of eigenfunctions on the global manifold $M$. This has the interesting consequence that if the eigenfunctions are quantum unique ergodic on the global manifold $M$, then the Cauchy data is automatically quantum unique ergodic on $H$ with respect to operators whose symbols vanish to order one on the glancing set of unit tangential directions to $H$.", "revisions": [ { "version": "v2", "updated": "2013-06-04T21:13:38.000Z" } ], "analyses": { "keywords": [ "cauchy data", "global manifold", "quantum ergodic restriction theorem", "rellich type identity", "automatically quantum unique ergodic" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1205.0286C" } } }