{ "id": "1205.0191", "version": "v1", "published": "2012-05-01T15:36:26.000Z", "updated": "2012-05-01T15:36:26.000Z", "title": "The omega-limit sets of quadratic Julia sets", "authors": [ "Andrew Barwell", "Brian Raines" ], "comment": "24 pages", "categories": [ "math.DS" ], "abstract": "In this paper we characterize $\\w$-limit sets of dendritic Julia sets for quadratic maps. We use Baldwin's symbolic representation of these spaces as a non-Hausdorff itinerary space and prove that quadratic maps with dendritic Julia sets have shadowing, and also that for all such maps, a closed invariant set is an $\\w$-limit set of a point if, and only if, it is internally chain transitive.", "revisions": [ { "version": "v1", "updated": "2012-05-01T15:36:26.000Z" } ], "analyses": { "keywords": [ "quadratic julia sets", "omega-limit sets", "dendritic julia sets", "quadratic maps", "non-hausdorff itinerary space" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1205.0191B" } } }