{ "id": "1204.6689", "version": "v12", "published": "2012-04-30T16:26:38.000Z", "updated": "2015-12-23T15:07:05.000Z", "title": "On a pair of zeta functions", "authors": [ "Zhi-Wei Sun" ], "comment": "22 pages. Accepted version for publication in Int. J. Number Theory", "categories": [ "math.NT" ], "abstract": "Let $m$ be a positive integer, and define $$\\zeta_m(s)=\\sum_{n=1}^\\infty\\frac{(-e^{2\\pi i/m})^{\\omega(n)}}{n^s}\\ \\ \\text{and} \\ \\ \\zeta^*_m(s)=\\sum_{n=1}^\\infty\\frac{(-e^{2\\pi i/m})^{\\Omega(n)}}{n^s},$$ for $\\Re(s)>1$, where $\\omega(n)$ denotes the number of distinct prime factors of $n$, and $\\Omega(n)$ represents the total number of prime factors of $n$ (counted with multiplicity). In this paper we study these two zeta functions and related arithmetical functions. We show that $$\\sum^\\infty_{n=1\\atop n\\ \\text{is squarefree}}\\frac{(-e^{2\\pi i/m})^{\\omega(n)}}n=0\\quad\\text{if}\\ \\ m>4,$$ which is similar to the known identity $\\sum_{n=1}^\\infty\\mu(n)/n=0$ equivalent to the Prime Number Theorem. For $m>4$, we prove that $$\\zeta_m(1):=\\sum_{n=1}^\\infty\\frac{(-e^{2\\pi i/m})^{\\omega(n)}}n=0 \\ \\ \\text{and}\\ \\ \\zeta^*_m(1):=\\sum_{n=1}^\\infty\\frac{(-e^{2\\pi i/m})^{\\Omega(n)}}n=0,$$ and that both $V_m(x)(\\log x)^{2\\pi i/m}$ and $V_m^*(x)(\\log x)^{2\\pi i/m}$ have explicit given finite limits as $x\\to\\infty$, where $$V_m(x)=\\sum_{n\\le x}\\frac{(-e^{2\\pi i/m})^{\\omega(n)}}n\\ \\ \\text{and}\\ \\ V_m^*(x)=\\sum_{n\\le x}\\frac{(-e^{2\\pi i/m})^{\\Omega(n)}}n.$$ We also raise a hypothesis on the parities of $\\Omega(n)-n$ which implies the Riemann Hypothesis.", "revisions": [ { "version": "v11", "updated": "2014-05-19T01:11:04.000Z", "abstract": "Let $m$ be a positive integer, and define $$\\zeta_m(s)=\\sum_{n=1}^\\infty\\frac{(-e^{2\\pi i/m})^{\\omega(n)}}{n^s}\\ \\ \\text{and} \\ \\ \\zeta^*_m(s)=\\sum_{n=1}^\\infty\\frac{(-e^{2\\pi i/m})^{\\Omega(n)}}{n^s},$$ for $\\Re(s)>1$, where $\\omega(n)$ denotes the number of distinct factors of $n$, and $\\Omega(n)$ represents the total number of prime factors of $n$ (counted with multiplicity). In this paper we study these two zeta functions and related arithmetical functions. We show that $$\\sum^\\infty_{n=1\\atop n\\ \\text{is squarefree}}\\frac{(-e^{2\\pi i/m})^{\\omega(n)}}n=0\\quad\\text{if}\\ \\ m>4,$$ which is similar to the known identity $\\sum_{n=1}^\\infty\\mu(n)/n=0$ equivalent to the Prime Number Theorem. For $m>4$, we prove that $$\\zeta_m(1):=\\sum_{n=1}^\\infty\\frac{(-e^{2\\pi i/m})^{\\omega(n)}}n=0 \\ \\ \\text{and}\\ \\ \\zeta^*_m(1):=\\sum_{n=1}^\\infty\\frac{(-e^{2\\pi i/m})^{\\Omega(n)}}n=0,$$ and that both $V_m(x)(\\log x)^{2\\pi i/m}$ and $V_m^*(x)(\\log x)^{2\\pi i/m}$ have explicit given finite limits as $x\\to\\infty$, where $$V_m(x)=\\sum_{n\\le x}\\frac{(-e^{2\\pi i/m})^{\\omega(n)}}n\\ \\ \\text{and}\\ \\ V_m^*(x)=\\sum_{n\\le x}\\frac{(-e^{2\\pi i/m})^{\\Omega(n)}}n.$$ We also raise a hypothesis on the parities of $\\Omega(n)-n$ which implies the Riemann Hypothesis.", "comment": "22 pages, refined version", "journal": null, "doi": null }, { "version": "v12", "updated": "2015-12-23T15:07:05.000Z" } ], "analyses": { "subjects": [ "11M99", "11A25", "11N37" ], "keywords": [ "zeta functions", "prime number theorem", "riemann hypothesis", "distinct factors", "finite limits" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1204.6689S" } } }