{ "id": "1204.6515", "version": "v1", "published": "2012-04-29T20:30:14.000Z", "updated": "2012-04-29T20:30:14.000Z", "title": "A Sharp Bound for the Circumference in $t$-tough graphs with $t>1$", "authors": [ "Zh. G. Nikoghosyan" ], "comment": "29 pages", "categories": [ "math.CO" ], "abstract": "It is proved that if $G$ is a $t$-tough graph of order $n$ and minimum degree $\\delta$ with $t>1$ then either $G$ has a cycle of length at least $\\min\\{n,2\\delta+5\\}$ or $G$ is the Petersen graph.", "revisions": [ { "version": "v1", "updated": "2012-04-29T20:30:14.000Z" } ], "analyses": { "keywords": [ "tough graph", "sharp bound", "circumference" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1204.6515N" } } }