{ "id": "1204.6361", "version": "v1", "published": "2012-04-28T03:21:02.000Z", "updated": "2012-04-28T03:21:02.000Z", "title": "Congruence classes of 2-adic valuations of Stirling numbers of the second kind", "authors": [ "Curtis Bennett", "Edward Mosteig" ], "comment": "23 pages, 1 figure", "categories": [ "math.NT", "math.CO" ], "abstract": "We analyze congruence classes of $S(n,k)$, the Stirling numbers of the second kind, modulo powers of 2. This analysis provides insight into a conjecture posed by Amdeberhan, Manna and Moll, which those authors established for $k\\le5$. We provide a framework that can be used to justify the conjecture by computational means, which we then complete for $k=5, 6,..., 20$.", "revisions": [ { "version": "v1", "updated": "2012-04-28T03:21:02.000Z" } ], "analyses": { "subjects": [ "11B73" ], "keywords": [ "second kind", "stirling numbers", "valuations", "analyze congruence classes", "modulo powers" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1204.6361B" } } }