{ "id": "1204.6235", "version": "v3", "published": "2012-04-27T14:58:36.000Z", "updated": "2013-03-23T18:57:54.000Z", "title": "Stabilizers of simple paths in the Bruhat-Tits tree of SL(2) over finite extensions of Q2", "authors": [ "Terence Joseph Kivran-Swaine" ], "comment": "This paper has been withdrawn by the author due to an index error in the main theorem", "categories": [ "math.NT", "math.RT" ], "abstract": "For F an algebraic extension of Q2, the conjugacy classes of invertible, 2-by-2, trace-zero matrices under the action of G := SL2(F) are analyzed relative to the quadratic extension that splits the respective characteristic polynomial. The stabilizer in G of each such matrix is computed as a stabilizer of a simple, Galois invariant path in the Bruhat-Tits Tree of G.", "revisions": [ { "version": "v3", "updated": "2013-03-23T18:57:54.000Z" } ], "analyses": { "subjects": [ "11S15", "11T30", "22E35" ], "keywords": [ "bruhat-tits tree", "simple paths", "finite extensions", "stabilizer", "galois invariant path" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1204.6235K" } } }