{ "id": "1204.5813", "version": "v1", "published": "2012-04-26T02:18:45.000Z", "updated": "2012-04-26T02:18:45.000Z", "title": "Superconvergence Points of Spectral Interpolation", "authors": [ "Zhimin Zhang" ], "categories": [ "math.NA" ], "abstract": "In this work, we study superconvergence properties for some high-order orthogonal polynomial interpolations.The results are two-folds: When interpolating function values, we identify those points where the first and second derivatives of the interpolant converge faster;When interpolating the first derivative,we locate those points where the function value of the interpolant superconverges. For the earlier case, we use various Chebyshev polynomials; and for the later case,we also include the counterpart Legendre polynomials.", "revisions": [ { "version": "v1", "updated": "2012-04-26T02:18:45.000Z" } ], "analyses": { "keywords": [ "spectral interpolation", "superconvergence points", "high-order orthogonal polynomial interpolations", "counterpart legendre polynomials", "study superconvergence properties" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1204.5813Z" } } }