{ "id": "1204.5293", "version": "v2", "published": "2012-04-24T08:00:43.000Z", "updated": "2013-03-19T16:06:10.000Z", "title": "Stability of solutions to aggregation equation in bounded domains", "authors": [ "Rafał Celiński" ], "categories": [ "math.AP" ], "abstract": "We consider the aggregation equation $u_t= \\div(\\nabla u-u\\nabla \\K(u))$ in a bounded domain $\\Omega\\subset \\R^d$ with supplemented the Neumann boundary condition and with a nonnegative, integrable initial datum. Here, $\\K=\\K(u)$ is an integral operator. We study the local and global existence of solutions and we derive conditions which lead us to either the stability or instability of constant solutions.", "revisions": [ { "version": "v2", "updated": "2013-03-19T16:06:10.000Z" } ], "analyses": { "subjects": [ "35K55", "35B40" ], "keywords": [ "aggregation equation", "bounded domain", "neumann boundary condition", "constant solutions", "integral operator" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1204.5293C" } } }