{ "id": "1204.4193", "version": "v3", "published": "2012-04-18T20:05:13.000Z", "updated": "2012-12-03T18:34:34.000Z", "title": "Quasi-isometric co-Hopficity of non-uniform lattices in rank-one semi-simple Lie groups", "authors": [ "Ilya Kapovich", "Anton Lukyanenko" ], "comment": "13 pages, 2 figures", "journal": "Conform. Geom. Dyn. 16 (2012), 269-282", "categories": [ "math.GT", "math.GR" ], "abstract": "We prove that if $G$ is a non-uniform lattice in a rank-one semi-simple Lie group $\\ne Isom(\\H^2_\\R)$ then $G$ is quasi-isometrically co-Hopf. This means that every quasi-isometric embedding $G\\to G$ is coarsely onto and thus is a quasi-isometry.", "revisions": [ { "version": "v3", "updated": "2012-12-03T18:34:34.000Z" } ], "analyses": { "subjects": [ "20F65" ], "keywords": [ "rank-one semi-simple lie group", "non-uniform lattice", "quasi-isometric co-hopficity", "quasi-isometrically co-hopf" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "Conform. Geom. Dyn." }, "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1204.4193K" } } }