{ "id": "1204.3521", "version": "v2", "published": "2012-04-16T15:21:33.000Z", "updated": "2012-06-21T16:55:14.000Z", "title": "Restriction of a character sheaf to conjugacy classes", "authors": [ "G. Lusztig" ], "comment": "12 pages", "categories": [ "math.RT" ], "abstract": "Let A be a character sheaf on a reductive connected group G over an algebraically closed field. Assuming that the characteristic is not bad, we show that for certain conjugacy classes D in G the restriction of A to D is a local system up to shift; we also give a parametrization of unipotent cuspidal character sheaves on G in terms of restrictions to conjugacy classes. Without restriction on characteristic we define canonical bijections from the set of unipotent character sheaves on G (and from the set of unipotent representations of the corresponding split reductive group over a finite field) to a set combinatorially defined in terms of the Weyl group.", "revisions": [ { "version": "v2", "updated": "2012-06-21T16:55:14.000Z" } ], "analyses": { "keywords": [ "conjugacy classes", "character sheaf", "restriction", "unipotent cuspidal character sheaves", "unipotent character sheaves" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1204.3521L" } } }