{ "id": "1204.3501", "version": "v2", "published": "2012-04-16T14:36:29.000Z", "updated": "2012-05-10T15:06:07.000Z", "title": "Large Deviation Principle for Some Measure-Valued Processes", "authors": [ "Parisa Fatheddin", "Jie Xiong" ], "comment": "21 pages", "categories": [ "math.PR" ], "abstract": "We establish a large deviation principle for the solutions of a class of stochastic partial differential equations with non-Lipschitz continuous coefficients. As an application, the large deviation principle is derived for super-Brownian motion and Fleming-Viot processes.", "revisions": [ { "version": "v2", "updated": "2012-05-10T15:06:07.000Z" } ], "analyses": { "subjects": [ "60F10", "60H15", "60J68" ], "keywords": [ "large deviation principle", "measure-valued processes", "stochastic partial differential equations", "fleming-viot processes", "super-brownian motion" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1204.3501F" } } }