{ "id": "1204.3031", "version": "v1", "published": "2012-04-13T15:50:49.000Z", "updated": "2012-04-13T15:50:49.000Z", "title": "On the existence of nilsolitons on 2-step nilpotent Lie groups", "authors": [ "David Oscari" ], "comment": "13 pages. arXiv admin note: text overlap with arXiv:1008.3417", "categories": [ "math.DG", "math.RT" ], "abstract": "A 2-step nilpotent Lie algebra n is said to be of type (p,q)if dim(n)=p+q and dim([n,n])=p. By considering a class of 2-step nilpotent Lie algebras naturally attached to graphs, we prove that there exist indecomposable, 2-step nilpotent Lie groups of type (p,q) which do not admit a nilsoliton metric for every pair (p,q) such that 20 < q and q-2 < p < 1/2q^2-5/2q+10. This improves a result due to Jablonski.", "revisions": [ { "version": "v1", "updated": "2012-04-13T15:50:49.000Z" } ], "analyses": { "keywords": [ "nilpotent lie groups", "nilpotent lie algebra", "nilsoliton metric" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1204.3031O" } } }