{ "id": "1204.2176", "version": "v2", "published": "2012-04-10T15:12:01.000Z", "updated": "2013-12-06T20:35:11.000Z", "title": "Large time asymptotics for the fluctuation SPDE in the Kuramoto synchronization model", "authors": [ "Eric Lucon" ], "comment": "34 pages, 5 figures; V2: introduction simplified, references added and typos corrected", "categories": [ "math.PR", "cond-mat.dis-nn", "math.AP", "nlin.AO" ], "abstract": "We investigate the long-time asymptotics of the fluctuation SPDE in the Kuramoto synchronization model. We establish the linear behavior for large time and weak disorder of the quenched limit fluctuations of the empirical measure of the particles around its McKean-Vlasov limit. This is carried out through a spectral analysis of the underlying unbounded evolution operator, using arguments of perturbation of self-adjoint operators and analytic semigroups. We state in particular a Jordan decomposition of the evolution operator which is the key point in order to show that the fluctuations of the disordered Kuramoto model are not self-averaging.", "revisions": [ { "version": "v2", "updated": "2013-12-06T20:35:11.000Z" } ], "analyses": { "subjects": [ "35P15", "46N60", "47A55", "60H15", "82C22" ], "keywords": [ "kuramoto synchronization model", "large time asymptotics", "fluctuation spde", "evolution operator", "jordan decomposition" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1204.2176L" } } }