{ "id": "1204.2163", "version": "v1", "published": "2012-04-10T14:24:42.000Z", "updated": "2012-04-10T14:24:42.000Z", "title": "Existence of solution to a critical equation with variable exponent", "authors": [ "Julián Fernández Bonder", "Nicolas Saintier", "Analía Silva" ], "journal": "Annales Academiae Scientiarum Fennicae Mathematica, 37 (2012), 579-594", "categories": [ "math.AP" ], "abstract": "In this paper we study the existence problem for the $p(x)-$Laplacian operator with a nonlinear critical source. We find a local condition on the exponents ensuring the existence of a nontrivial solution that shows that the Pohozaev obstruction does not holds in general in the variable exponent setting. The proof relies on the Concentration--Compactness Principle for variable exponents and the Mountain Pass Theorem.", "revisions": [ { "version": "v1", "updated": "2012-04-10T14:24:42.000Z" } ], "analyses": { "subjects": [ "35J92", "35B33" ], "keywords": [ "variable exponent", "critical equation", "mountain pass theorem", "local condition", "existence problem" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1204.2163F" } } }