{ "id": "1204.2074", "version": "v2", "published": "2012-04-10T08:09:56.000Z", "updated": "2013-06-20T01:31:17.000Z", "title": "Weak convergence of self-normalized partial sums processes", "authors": [ "Miklós Csörgő", "Zhishui Hu" ], "categories": [ "math.PR" ], "abstract": "Let $\\{X, X_n, n\\geq 1\\}$ be a sequence of independent identically distributed non-degenerate random variables. Put $S_0=0, S_n = \\sum^n_{i=1} X_i$ and $V_n^2=\\sum^n_{i=1} X_i^2, n\\ge 1.$ A weak convergence theorem is established for the self-normalized partial sums processes $\\{S_{[nt]}/V_n, 0\\le t\\le 1\\}$ when $X$ belongs to the domain of attraction of a stable law with index $\\alpha \\in (0,2]$. The respective limiting distributions of the random variables ${\\max_{1\\le i\\le n}|X_i|}/{S_n}$ and ${\\max_{1\\le i\\le n}|X_i|}/{V_n}$ are also obtained under the same condition.", "revisions": [ { "version": "v2", "updated": "2013-06-20T01:31:17.000Z" } ], "analyses": { "subjects": [ "60F17", "60G52" ], "keywords": [ "self-normalized partial sums processes", "weak convergence", "distributed non-degenerate random variables", "independent identically distributed non-degenerate random" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1204.2074C" } } }