{ "id": "1204.2044", "version": "v1", "published": "2012-04-10T05:05:04.000Z", "updated": "2012-04-10T05:05:04.000Z", "title": "Linear operators with wild dynamics", "authors": [ "Jean-Matthieu Augé" ], "comment": "14 pages", "categories": [ "math.FA" ], "abstract": "If $X$ is a separable infinite dimensional Banach space, we construct a bounded and linear operator $R$ on $X$ such that $$ A_R=\\{x \\in X, \\|R^tx\\| \\rightarrow \\infty\\} $$ is not dense and has non empty interior with the additional property that $R$ can be written $I+K$, where $I$ is the identity and $K$ is a compact operator. This answers two recent questions of H\\'ajek and Smith.", "revisions": [ { "version": "v1", "updated": "2012-04-10T05:05:04.000Z" } ], "analyses": { "subjects": [ "47A05", "47A15", "47A16" ], "keywords": [ "linear operator", "wild dynamics", "separable infinite dimensional banach space", "non empty interior", "compact operator" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1204.2044A" } } }