{ "id": "1204.1936", "version": "v2", "published": "2012-04-09T17:40:44.000Z", "updated": "2013-05-30T21:49:43.000Z", "title": "Linear trees in uniform hypergraphs", "authors": [ "Zoltan Furedi" ], "comment": "Slightly revised, 14 pages, originally presented on Eurocomb 2011", "categories": [ "math.CO" ], "abstract": "Given a tree T on v vertices and an integer k exceeding one. One can define the k-expansion T^k as a k-uniform linear hypergraph by enlarging each edge with a new, distinct set of (k-2) vertices. Then T^k has v+ (v-1)(k-2) vertices. The aim of this paper is to show that using the delta-system method one can easily determine asymptotically the size of the largest T^k-free n-vertex hypergraph, i.e., the Turan number of T^k.", "revisions": [ { "version": "v2", "updated": "2013-05-30T21:49:43.000Z" } ], "analyses": { "subjects": [ "05D05", "05C65" ], "keywords": [ "uniform hypergraphs", "linear trees", "k-uniform linear hypergraph", "turan number", "distinct set" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1204.1936F" } } }