{ "id": "1204.1695", "version": "v3", "published": "2012-04-08T01:09:27.000Z", "updated": "2017-08-24T10:00:34.000Z", "title": "A Sharp Comparison Theorem for Compact Manifolds with Mean Convex Boundary", "authors": [ "Martin Li" ], "comment": "6 pages; published in Journal of Geometric Analysis", "categories": [ "math.DG" ], "abstract": "Let $M$ be a compact $n$-dimensional Riemannian manifold with nonnegative Ricci curvature and mean convex boundary $\\partial M$. Assume that the mean curvature $H$ of the boundary $\\partial M$ satisfies $H \\geq (n-1) k >0$ for some positive constant $k$. In this paper, we prove that the distance function $d$ to the boundary $\\partial M$ is bounded from above by $\\frac{1}{k}$ and the upper bound is achieved if and only if $M$ is isometric to an $n$-dimensional Euclidean ball of radius $\\frac{1}{k}$.", "revisions": [ { "version": "v2", "updated": "2012-08-28T11:19:56.000Z", "comment": "revised version", "journal": null, "doi": null }, { "version": "v3", "updated": "2017-08-24T10:00:34.000Z" } ], "analyses": { "keywords": [ "mean convex boundary", "sharp comparison theorem", "compact manifolds", "dimensional riemannian manifold", "dimensional euclidean ball" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1204.1695L" } } }