{ "id": "1204.1161", "version": "v1", "published": "2012-04-05T09:36:36.000Z", "updated": "2012-04-05T09:36:36.000Z", "title": "Hyperbolicity and Stability for Hamiltonian flows", "authors": [ "M. Bessa", "M. J. Torres", "J. Rocha" ], "comment": "16 pages", "journal": "Journal of Differential Equations, vol 254, 1, 309-322, 2013", "categories": [ "math.DS" ], "abstract": "We prove that a Hamiltonian star system, defined on a 2d-dimensional symplectic manifold M, is Anosov. As a consequence we obtain the proof of the stability conjecture for Hamiltonians. This generalizes the 4-dimensional results in [6].", "revisions": [ { "version": "v1", "updated": "2012-04-05T09:36:36.000Z" } ], "analyses": { "keywords": [ "hamiltonian flows", "hyperbolicity", "hamiltonian star system", "2d-dimensional symplectic manifold", "stability conjecture" ], "tags": [ "journal article" ], "publication": { "doi": "10.1016/j.jde.2012.08.010", "journal": "Journal of Differential Equations", "year": 2013, "volume": 254, "number": 1, "pages": 309 }, "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013JDE...254..309B" } } }