{ "id": "1204.0728", "version": "v1", "published": "2012-04-03T16:31:03.000Z", "updated": "2012-04-03T16:31:03.000Z", "title": "On Self-Adjointness Of 1-D Schrödinger Operators With $δ$-Interactions", "authors": [ "I. I. Karpenko", "D. L. Tyshkevich" ], "comment": "To be published in Methods of Functional Analysis and Topology (2012)", "categories": [ "math.FA" ], "abstract": "In the present work we consider in $L^2(\\mathbb{R}_+)$ the Schr\\\"odinger operator $\\mathrm{H_{X,\\alpha}}=-\\mathrm{\\frac{d^2}{dx^2}}+\\sum_{n=1}^{\\infty}\\alpha_n\\delta(x-x_n)$. We investigate and complete the conditions of self-adjointness and nontriviality of deficiency indices for $\\mathrm{H_{X,\\alpha}}$ obtained in \\cite{karpiiKost}. We generalize the conditions found earlier in the special case $d_n:=x_{n}-x_{n-1}=1/n$, $n\\in \\mathbb{N}$, to a wider class of sequences $\\{x_n\\}_{n=1}^\\infty$. Namely, for $x_n=\\frac{1}{n^{\\gamma}\\ln^\\eta n}$ with $<\\gamma,\\eta>\\in(1/2, 1)\\times(-\\infty,+\\infty)\\:\\cup\\:\\{1\\}\\times(-\\infty,1]$, the description of asymptotic behavior of the sequence $\\{\\alpha_n\\}_{n=1}^{\\infty}$ is obtained for $\\mathrm{H_{X,\\alpha}}$ either to be self-adjoint or to have nontrivial deficiency indices.", "revisions": [ { "version": "v1", "updated": "2012-04-03T16:31:03.000Z" } ], "analyses": { "subjects": [ "34L40", "47E05", "47B25", "47B36", "81Q10" ], "keywords": [ "schrödinger operators", "self-adjointness", "interactions", "nontrivial deficiency indices", "wider class" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1204.0728K" } } }