{ "id": "1204.0409", "version": "v1", "published": "2012-04-02T14:02:46.000Z", "updated": "2012-04-02T14:02:46.000Z", "title": "Fundamental domain of invariant sets and applications", "authors": [ "Pengfei Zhang" ], "doi": "10.1017/etds.2012.129", "categories": [ "math.DS" ], "abstract": "Let $X$ be a compact metric space and $f:X\\to X$ a homeomorphism on $X$. We construct a fundamental domain for the set with finite peaks for each cocycle induced by $\\phi\\in C(X,R)$. In particular we prove that if a partially hyperbolic diffeomorphism is accessible, then either the set with finite peaks for the Jacobian cocycle is of full volume, or the set of transitive points is of positive volume.", "revisions": [ { "version": "v1", "updated": "2012-04-02T14:02:46.000Z" } ], "analyses": { "subjects": [ "37D30", "37D20", "37B40" ], "keywords": [ "fundamental domain", "invariant sets", "applications", "finite peaks", "compact metric space" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1204.0409Z" } } }