{ "id": "1204.0107", "version": "v1", "published": "2012-03-31T15:33:15.000Z", "updated": "2012-03-31T15:33:15.000Z", "title": "Mean curvature flow of higher codimension in Riemannian manifolds", "authors": [ "Kefeng Liu", "Hongwei Xu", "Entao Zhao" ], "comment": "28 pages", "categories": [ "math.DG" ], "abstract": "We investigate the convergence of the mean curvature flow of arbitrary codimension in Riemannian manifolds with bounded geometry. We prove that if the initial submanifold satisfies a pinching condition, then along the mean curvature flow the submanifold contracts smoothly to a round point in finite time. As a consequence we obtain a differentiable sphere theorem for submanifolds in a Riemannian manifold.", "revisions": [ { "version": "v1", "updated": "2012-03-31T15:33:15.000Z" } ], "analyses": { "keywords": [ "mean curvature flow", "riemannian manifold", "higher codimension", "initial submanifold satisfies", "arbitrary codimension" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1204.0107L" } } }