{ "id": "1203.6434", "version": "v7", "published": "2012-03-29T05:55:26.000Z", "updated": "2012-11-28T04:27:47.000Z", "title": "A characterization of the unitary highest weight modules by Euclidean Jordan algebras", "authors": [ "Zhanqiang Bai" ], "comment": "34pages, accepted by Journal of Lie Theory", "categories": [ "math.RT" ], "abstract": "Let $\\mathfrak{co}(J)$ be the conformal algebra of a simple Euclidean Jordan algebra $J$. We show that a (non-trivial) unitary highest weight $\\mathfrak{co}(J)$-module has the smallest positive Gelfand-Kirillov dimension if and only if a certain quadratic relation is satisfied in the universal enveloping algebra $U(\\mathfrak{co}(J)_{\\mathbb{C}})$. In particular, we find an quadratic element in $U(\\mathfrak{co}(J)_{\\mathbb{C}})$. A prime ideal in $U(\\mathfrak{co}(J)_{\\mathbb{C}})$ equals the Joseph ideal if and only if it contains this quadratic element.", "revisions": [ { "version": "v7", "updated": "2012-11-28T04:27:47.000Z" } ], "analyses": { "keywords": [ "unitary highest weight modules", "characterization", "quadratic element", "simple euclidean jordan algebra", "smallest positive gelfand-kirillov dimension" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1203.6434B" } } }