{ "id": "1203.6335", "version": "v3", "published": "2012-03-28T18:51:10.000Z", "updated": "2015-04-09T05:07:56.000Z", "title": "Endpoint estimates for commutators of singular integrals related to Schrödinger operators", "authors": [ "Luong Dang Ky" ], "comment": "Rev. Mat. Iberoam. (to appear)", "categories": [ "math.CA", "math.FA" ], "abstract": "Let $L= -\\Delta+ V$ be a Schr\\\"odinger operator on $\\mathbb R^d$, $d\\geq 3$, where $V$ is a nonnegative potential, $V\\ne 0$, and belongs to the reverse H\\\"older class $RH_{d/2}$. In this paper, we study the commutators $[b,T]$ for $T$ in a class $\\mathcal K_L$ of sublinear operators containing the fundamental operators in harmonic analysis related to $L$. More precisely, when $T\\in \\mathcal K_L$, we prove that there exists a bounded subbilinear operator $\\mathfrak R= \\mathfrak R_T: H^1_L(\\mathbb R^d)\\times BMO(\\mathbb R^d)\\to L^1(\\mathbb R^d)$ such that $|T(\\mathfrak S(f,b))|- \\mathfrak R(f,b)\\leq |[b,T](f)|\\leq \\mathfrak R(f,b) + |T(\\mathfrak S(f,b))|$, where $\\mathfrak S$ is a bounded bilinear operator from $H^1_L(\\mathbb R^d)\\times BMO(\\mathbb R^d)$ into $L^1(\\mathbb R^d)$ which does not depend on $T$. The subbilinear decomposition (\\ref{abstract 1}) explains why commutators with the fundamental operators are of weak type $(H^1_L,L^1)$, and when a commutator $[b,T]$ is of strong type $(H^1_L,L^1)$. Also, we discuss the $H^1_L$-estimates for commutators of the Riesz transforms associated with the Schr\\\"odinger operator $L$.", "revisions": [ { "version": "v2", "updated": "2012-04-13T16:19:49.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v3", "updated": "2015-04-09T05:07:56.000Z" } ], "analyses": { "subjects": [ "42B35", "35J10", "42B20" ], "keywords": [ "singular integrals", "endpoint estimates", "schrödinger operators", "commutator", "fundamental operators" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1203.6335D" } } }