{ "id": "1203.6310", "version": "v2", "published": "2012-03-28T16:42:26.000Z", "updated": "2012-07-30T12:17:24.000Z", "title": "On Posa's conjecture for random graphs", "authors": [ "Daniela Kühn", "Deryk Osthus" ], "comment": "includes minor revisions, accepted for publication in SIAM Journal Discrete Mathematics", "categories": [ "math.CO" ], "abstract": "The famous Posa conjecture states that every graph of minimum degree at least 2n/3 contains the square of a Hamilton cycle. This has been proved for large n by Koml\\'os, Sark\\\"ozy and Szemer\\'edi. Here we prove that if p > n^{-1/2+\\eps}, then asymptotically almost surely, the binomial random graph G_{n,p} contains the square of a Hamilton cycle. This provides an `approximate threshold' for the property in the sense that the result fails to hold if p< n^{-1/2}.", "revisions": [ { "version": "v2", "updated": "2012-07-30T12:17:24.000Z" } ], "analyses": { "subjects": [ "05C80", "05C45" ], "keywords": [ "posas conjecture", "hamilton cycle", "famous posa conjecture states", "binomial random graph", "minimum degree" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1203.6310K" } } }