{ "id": "1203.6299", "version": "v3", "published": "2012-03-28T15:40:39.000Z", "updated": "2012-09-13T21:54:56.000Z", "title": "Interpreting the projective hierarchy in expansions of the real line", "authors": [ "Philipp Hieronymi", "Michael Tychonievich" ], "categories": [ "math.LO" ], "abstract": "We give a criterion when an expansion of the ordered set of real numbers defines the image of the expansion of the real field by the set of natural numbers under a semialgebraic injection. In particular, we show that for a non-quadratic irrational number a, the expansion of the ordered Q(a)-vector space of real numbers by the set of natural numbers defines multiplication on the real numbers.", "revisions": [ { "version": "v3", "updated": "2012-09-13T21:54:56.000Z" } ], "analyses": { "keywords": [ "real line", "projective hierarchy", "natural numbers defines multiplication", "real numbers defines", "non-quadratic irrational number" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1203.6299H" } } }