{ "id": "1203.5988", "version": "v1", "published": "2012-03-27T14:54:18.000Z", "updated": "2012-03-27T14:54:18.000Z", "title": "Low regularity solutions for the two-dimensional \"rigid body + incompressible Euler\" system", "authors": [ "Olivier Glass", "Franck Sueur" ], "categories": [ "math.AP" ], "abstract": "In this note we consider the motion of a solid body in a two dimensional incompressible perfect fluid. We prove the global existence of solutions in the case where the initial vorticity belongs to $L^p$ with $p>1$ and is compactly supported. We do not assume that the energy is finite.", "revisions": [ { "version": "v1", "updated": "2012-03-27T14:54:18.000Z" } ], "analyses": { "keywords": [ "low regularity solutions", "rigid body", "incompressible euler", "two-dimensional", "initial vorticity belongs" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1203.5988G" } } }