{ "id": "1203.5827", "version": "v3", "published": "2012-03-26T21:49:01.000Z", "updated": "2013-03-01T19:46:49.000Z", "title": "On the Arithmetic Fundamental Lemma in the minuscule case", "authors": [ "Michael Rapoport", "Ulrich Terstiege", "Wei Zhang" ], "comment": "Referee's comments incorporated; in particular, the existence of frames for using the theory of displays in the proofs of Theorems 9.4 and 9.5 is clarified. To appear in Compositio Math", "journal": "Compositio Mathematica, 2013, volume 149, issue 10, pp. 1631-1666", "doi": "10.1112/S0010437X13007239", "categories": [ "math.NT", "math.AG", "math.RT" ], "abstract": "The arithmetic fundamental lemma conjecture of the third author connects the derivative of an orbital integral on a symmetric space with an intersection number on a formal moduli space of $p$-divisible groups of Picard type. It arises in the relative trace formula approach to the arithmetic Gan-Gross-Prasad conjecture. We prove this conjecture in the minuscule case.", "revisions": [ { "version": "v3", "updated": "2013-03-01T19:46:49.000Z" } ], "analyses": { "subjects": [ "11G18", "14G17", "22E55" ], "keywords": [ "minuscule case", "arithmetic fundamental lemma conjecture", "arithmetic gan-gross-prasad conjecture", "third author connects", "relative trace formula approach" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1203.5827R" } } }