{ "id": "1203.5498", "version": "v4", "published": "2012-03-25T14:09:04.000Z", "updated": "2013-09-05T14:57:23.000Z", "title": "Regularity of Semigroups via the Asymptotic Behaviour at Zero", "authors": [ "Stephan Fackler" ], "comment": "14 pages; final version", "journal": "Semigroup Forum 87 (2013), no. 1, 1-17", "doi": "10.1007/s00233-013-9466-y", "categories": [ "math.AP", "math.FA" ], "abstract": "An interesting result by T. Kato and A. Pazy says that a contractive semigroup (T(t)) on a uniformly convex space X is holomorphic iff limsup_{t \\downarrow 0} ||T(t)-Id|| < 2. We study extensions of this result which are valid on arbitrary Banach spaces for semigroups which are not necessarily contractive. This allows us to prove a general extrapolation result for holomorphy of semigroups on interpolation spaces of exponent {\\theta} in (0,1). As application we characterize boundedness of the generator of a cosine family on a UMD-space by a zero-two law. Moreover, our methods can be applied to R-sectoriality: We obtain a characterization of maximal regularity by the behaviour of the semigroup at zero and show extrapolation results.", "revisions": [ { "version": "v4", "updated": "2013-09-05T14:57:23.000Z" } ], "analyses": { "subjects": [ "47D06", "47D09", "46B70" ], "keywords": [ "asymptotic behaviour", "arbitrary banach spaces", "general extrapolation result", "maximal regularity", "zero-two law" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1203.5498F" } } }