{ "id": "1203.5296", "version": "v1", "published": "2012-03-23T17:02:13.000Z", "updated": "2012-03-23T17:02:13.000Z", "title": "Hausdorff dimension and non-degenerate families of projections", "authors": [ "Esa Järvenpää", "Maarit Järvenpää", "Tamás Keleti" ], "categories": [ "math.CA" ], "abstract": "We study parametrized families of orthogonal projections for which the dimension of the parameter space is strictly less than that of the Grassmann manifold. We answer the natural question of how much the Hausdorff dimension may decrease by verifying the best possible lower bound for the dimension of almost all projections of a finite measure. We also show that a similar result is valid for smooth families of maps from $n$-dimensional Euclidean space to $m$-dimensional one.", "revisions": [ { "version": "v1", "updated": "2012-03-23T17:02:13.000Z" } ], "analyses": { "subjects": [ "28A80", "37C45" ], "keywords": [ "hausdorff dimension", "non-degenerate families", "dimensional euclidean space", "study parametrized families", "orthogonal projections" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1203.5296J" } } }