{ "id": "1203.4873", "version": "v2", "published": "2012-03-22T02:56:42.000Z", "updated": "2013-03-20T06:33:40.000Z", "title": "Super-Brownian motion as the unique strong solution to an SPDE", "authors": [ "Jie Xiong" ], "comment": "Published in at http://dx.doi.org/10.1214/12-AOP789 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org)", "journal": "Annals of Probability 2013, Vol. 41, No. 2, 1030-1054", "doi": "10.1214/12-AOP789", "categories": [ "math.PR" ], "abstract": "A stochastic partial differential equation (SPDE) is derived for super-Brownian motion regarded as a distribution function valued process. The strong uniqueness for the solution to this SPDE is obtained by an extended Yamada-Watanabe argument. Similar results are also proved for the Fleming-Viot process.", "revisions": [ { "version": "v2", "updated": "2013-03-20T06:33:40.000Z" } ], "analyses": { "keywords": [ "unique strong solution", "super-brownian motion", "stochastic partial differential equation", "distribution function valued process", "extended yamada-watanabe argument" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1203.4873X" } } }