{ "id": "1203.4726", "version": "v2", "published": "2012-03-21T12:58:22.000Z", "updated": "2012-04-02T16:04:23.000Z", "title": "Optimal stopping of strong Markov processes", "authors": [ "Sören Christensen", "Paavo Salminen", "Bao Quoc Ta" ], "comment": "1 figure", "categories": [ "math.PR" ], "abstract": "We characterize the value function and the optimal stopping time for a large class of optimal stopping problems where the underlying process to be stopped is a fairly general Markov process. The main result is inspired by recent findings for L\\'evy processes obtained essentially via the Wiener-Hopf factorization. The main ingredient in our approach is the representation of the $\\beta$-excessive functions as expected suprema. A variety of examples is given.", "revisions": [ { "version": "v2", "updated": "2012-04-02T16:04:23.000Z" } ], "analyses": { "subjects": [ "60G40", "60J25", "62L15" ], "keywords": [ "strong markov processes", "fairly general markov process", "optimal stopping time", "wiener-hopf factorization", "levy processes" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1203.4726C" } } }