{ "id": "1203.3994", "version": "v2", "published": "2012-03-18T20:12:43.000Z", "updated": "2012-12-05T17:10:10.000Z", "title": "Observation of Coulomb-Assisted Dipole-Forbidden Intraexciton Transitions in Semiconductors", "authors": [ "W. D. Rice", "J. Kono", "S. Zybell", "S. Winnerl", "J. Bhattacharyya", "H. Schneider", "M. Helm", "B. Ewers", "A. Chernikov", "M. Koch", "S. Chatterjee", "G. Khitrova", "H. M. Gibbs", "L. Schneebeli", "B. Breddermann", "M. Kira", "S. W. Koch" ], "comment": "5 pages, 3 figures", "journal": "Physical Review Letters 110, 137404 (2013)", "doi": "10.1103/PhysRevLett.110.137404", "categories": [ "cond-mat.mes-hall" ], "abstract": "We use terahertz pulses to induce resonant transitions between the eigenstates of optically generated exciton populations in a high-quality semiconductor quantum-well sample. Monitoring the excitonic photoluminescence, we observe transient quenching of the $1s$ exciton emission, which we attribute to the terahertz-induced $1s$-to-$2p$ excitation. Simultaneously, a pronounced enhancement of the $2s$-exciton emission is observed, despite the $1s$-to-$2s$ transition being dipole forbidden. A microscopic many-body theory explains the experimental observations as a Coulomb-scattering mixing of the 2$s$ and 2$p$ states, yielding an effective terahertz transition between the 1$s$ and 2$s$ populations.", "revisions": [ { "version": "v2", "updated": "2012-12-05T17:10:10.000Z" } ], "analyses": { "keywords": [ "coulomb-assisted dipole-forbidden intraexciton transitions", "observation", "microscopic many-body theory explains", "exciton emission", "high-quality semiconductor quantum-well sample" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Phys. Rev. Lett." }, "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1203.3994R" } } }