{ "id": "1203.2813", "version": "v1", "published": "2012-03-13T13:52:49.000Z", "updated": "2012-03-13T13:52:49.000Z", "title": "How behave the typical $L^q$-dimensions of measures?", "authors": [ "Frédéric Bayart" ], "categories": [ "math.CA" ], "abstract": "We compute, for a compact set $K\\subset\\mathbb R^d$, the value of the upper and of the lower $L^q$-dimension of a typical probability measure with support contained in $K$, for any $q\\in\\mathbb R$. Different definitions of the \"dimension\" of $K$ are involved to compute these values, following $q\\in\\mathbb R$.", "revisions": [ { "version": "v1", "updated": "2012-03-13T13:52:49.000Z" } ], "analyses": { "keywords": [ "compact set", "typical probability measure", "definitions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1203.2813B" } } }