{ "id": "1203.2728", "version": "v1", "published": "2012-03-13T07:59:47.000Z", "updated": "2012-03-13T07:59:47.000Z", "title": "On the maximal number of coprime subdegrees in finite primitive permutation groups", "authors": [ "Silvio Dolfi", "Robert Guralnick", "Cheryl Praeger", "Pablo Spiga" ], "categories": [ "math.GR", "math.CO" ], "abstract": "The subdegrees of a transitive permutation group are the orbit lengths of a point stabilizer. For a finite primitive permutation group which is not cyclic of prime order, the largest subdegree shares a non-trivial common factor with each non-trivial subdegree. On the other hand it is possible for non-trivial subdegrees of primitive groups to be coprime, a famous example being the rank 5 action of the small Janko group on 266 points which has subdegrees of lengths 11 and 12. We prove that, for every finite primitive group, the maximal size of a set of pairwise coprime non-trivial subdegrees is at most 2.", "revisions": [ { "version": "v1", "updated": "2012-03-13T07:59:47.000Z" } ], "analyses": { "subjects": [ "20B15", "20H30" ], "keywords": [ "finite primitive permutation group", "coprime subdegrees", "maximal number", "pairwise coprime non-trivial subdegrees", "small janko group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1203.2728D" } } }