{ "id": "1203.2688", "version": "v1", "published": "2012-03-13T01:32:18.000Z", "updated": "2012-03-13T01:32:18.000Z", "title": "Some Type I solutions of Ricci flow with rotational symmetry", "authors": [ "Jian Song" ], "categories": [ "math.DG", "math.AP" ], "abstract": "We prove that the Ricci flow on CP^n blown-up at one point starting with any rotationally symmetric Kahler metric must develop Type I singularities. In particular, if the total volume does not go to zero at the singular time, the parabolic blow-up limit of the Type I Ricci flow along the exceptional divisor is a complete non-flat shrinking gradient Kahler-Ricci soliton on a complete Kahler manifold homeomorphic to C^n blown-up at one point.", "revisions": [ { "version": "v1", "updated": "2012-03-13T01:32:18.000Z" } ], "analyses": { "keywords": [ "ricci flow", "rotational symmetry", "non-flat shrinking gradient kahler-ricci soliton", "complete non-flat shrinking gradient kahler-ricci", "complete kahler manifold homeomorphic" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1203.2688S" } } }