{ "id": "1203.2462", "version": "v1", "published": "2012-03-12T12:03:12.000Z", "updated": "2012-03-12T12:03:12.000Z", "title": "Non-integrability of geodesic flow on certain algebraic surfaces", "authors": [ "Thomas Waters" ], "comment": "Accepted in Physics Letters A", "categories": [ "math.DS", "math.DG", "nlin.CD" ], "abstract": "This paper addresses an open problem recently posed by V. Kozlov: a rigorous proof of the non-integrability of the geodesic flow on the cubic surface $x y z=1$. We prove this is the case using the Morales-Ramis theorem and Kovacic algorithm. We also consider some consequences and extensions of this result.", "revisions": [ { "version": "v1", "updated": "2012-03-12T12:03:12.000Z" } ], "analyses": { "keywords": [ "geodesic flow", "algebraic surfaces", "non-integrability", "paper addresses", "cubic surface" ], "tags": [ "journal article" ], "publication": { "doi": "10.1016/j.physleta.2012.03.016", "journal": "Physics Letters A", "year": 2012, "month": "Mar", "volume": 376, "number": 17, "pages": 1442 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012PhLA..376.1442W" } } }