{ "id": "1203.1759", "version": "v3", "published": "2012-03-08T11:52:56.000Z", "updated": "2021-09-22T07:29:17.000Z", "title": "On the behaviour of $γ\\Log p$ modulo 1", "authors": [ "Olivier Ramaré" ], "comment": "Fundamental flaw in the argument", "categories": [ "math.NT" ], "abstract": "We prove non-trivial lower bounds for sums of type $\\sum_{p\\sim P}g(\\gamma\\Log p)$, where $g$ is a non-negative $2\\pi$-periodical function and $\\gamma$ is a given parameter. As an application we prove that $\\zeta(1+it)^{\\pm1}\\ll\\Log\\Log (9+|t|)$ and extend the zero-free region of the Riemann zeta-function.", "revisions": [ { "version": "v2", "updated": "2012-03-13T10:59:50.000Z", "comment": "This paper has been withdrawn by the author due to a serious mistake that is being investigated", "journal": null, "doi": null }, { "version": "v3", "updated": "2021-09-22T07:29:17.000Z" } ], "analyses": { "keywords": [ "non-trivial lower bounds", "zero-free region", "riemann zeta-function", "application", "periodical function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1203.1759R" } } }