{ "id": "1203.1663", "version": "v1", "published": "2012-03-08T00:08:57.000Z", "updated": "2012-03-08T00:08:57.000Z", "title": "The Geometry of Integrable and Superintegrable Systems", "authors": [ "A. Ibort", "G. Marmo" ], "categories": [ "math-ph", "math.DS", "math.MP", "nlin.SI" ], "abstract": "The group of automorphisms of the geometry of an integrable system is considered. The geometrical structure used to obtain it is provided by a normal form representation of integrable systems that do not depend on any additional geometrical structure like symplectic, Poisson, etc. Such geometrical structure provides a generalized toroidal bundle on the carrier space of the system. Non--canonical diffeomorphisms of such structure generate alternative Hamiltonian structures for complete integrable Hamiltonian systems. The energy-period theorem provides the first non--trivial obstruction for the equivalence of integrable systems.", "revisions": [ { "version": "v1", "updated": "2012-03-08T00:08:57.000Z" } ], "analyses": { "subjects": [ "70H06", "37J35" ], "keywords": [ "superintegrable systems", "structure generate alternative hamiltonian structures", "normal form representation", "complete integrable hamiltonian systems", "first non-trivial obstruction" ], "tags": [ "journal article" ], "publication": { "doi": "10.1007/s11232-012-0099-1", "journal": "Theoretical and Mathematical Physics", "year": 2012, "month": "Aug", "volume": 172, "number": 2, "pages": 1109 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1093497, "adsabs": "2012TMP...172.1109I" } } }